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1 Introduction

An automated technique has been developed and evaluated to reconstruct 3-D
binary images of breast calcifications. The reconstruction algorithm consists of
segmentation, motion correction, correlation between views, 3-D binary limited-
view reconstruction of each calcification, and 3-D rendering. Our previous work
relied upon significant human intervention and judgment in producing the final
3-D image. In this grant, we sought methods to automate these tasks. Required
were robust methods of identifying, segmenting and correlating (or pairing)
calcifications between views.

The tasks of identifying and segmenting calcifications have been attempted
on numerous occasions. These previous attempts have been used almost exclu-
sively in computer aided diagnosis (CAD) systems. In such systems, the desire
is to capture a sufficient number of calcifications to identify clusters of suspicious
calcifications for evaluation by a human observer. Significant effort is expended
on eliminating false positives. By imaging the breast at 3 separate angles with
known spatial alignment, we have the advantage that true calcifications are
present in each of the images, while most spurious or non-calcified signals are
only found in one image. This additional constraint allows us to segment more
calcifications in each image, admittedly with a higher false positive rate. The
task of correlation between the images quite naturally reduces the false positive
rate in the 3-D image.

- The work of this grant is reviewed in this final report.




2 Body

2.1 Summary of Work Items

It is useful to restate the work items listed in the original grant. They are as
follows:

Task 1: Compile database of 50 selected cases (Months 1-2)
Task 2: Manually identify and pair calcifications in database images (Months 3-4)

Task 3: Evaluate methods for automated identifications, segmentation and corre-
lation of calcifications (Months 1-24). '

Task 4: Apply reconstruction technique to non-calcified structures (Months 25-36)

2.2 Segmentation
2.2.1 Image Processing

This section describes our algorithm for simultaneously identifying and segment-
ing calcifications in individual images.

| Each image is represented as a 1024 x 1024 array of 12-bit data, which
represents a 5 cm by 5 cm region in an x-ray projection. Figure 1 shows an
example of such an image. While the calcifications, which can be seen in the
upper left hand corner, are darker than their immediate surround, the difference
is not so large as the variation across the image due to the structures in the
breast of much larger scale.

To remove these larger features and thereby reduce the dynamic range, a
median filtered image is subtracted from the original image. That is, from
each image pixel value is subtracted the median of a 31 x 31 region containing
the pixel. Figure 2 shows the image after subtraction of the median filtered
image and after denoising the image. The denoising consists of replacing pixel
values which differ by more than three (3) standard deviations from the mean,
calculated for the surrounding 5 x 5 region. The removed values are replaced
with the average of the neighboring pixels.

To further emphasize the high frequency components of the image, a Lapla-
cian operator is applied to the image. At each pixel, a quadratic fit is made
to a 7 x 7 neighborhood, and the coefficients of the un-mixed quadratic terms
are used to estimate the Laplacian. The result of this operation is shown in
Figure 3.




Figure 1: Sample digital image for identification and segmentation of calcifica-
tions.




Figure 2: Digital image after subtracting the a median filtered image and re-
moving high-noise pixels.
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Figure 3: Digital image after applying (negative) Laplacian operator.

2.2.2 Segmentation of Candidate Calcifications

Figure 4 shows the Euler characteristic for the Laplacian image as a function
of threshold. The intention is that this gives one a reasonable estimate of the
threshold at which to segment the Laplacian image. A discussion of the Euler
characteristic and several tests on simulated data is given in section 2.4.
Figure 5 shows a segmentation obtained by including all pixels in the Lapla-
cian image (Figure 3) whose values are less than the threshold at which the
Euler characteristic achieves one quarter of its maximum value. The cluster of
calcifications in the upper left hand corner is clearly visible. While a significant
number of other pixels are also identified, even in the segmented image most of
these appear as a “dust” which a human observer would understand is not to be
consider calcified material. The intention of the remainder of the algorithm is to
computationally reject these false positives, based upon the segmentation and
information in the original image. First, however, note that the segmentation
is stable in the sense that, if instead of choosing the point at which the Euler
characteristic achieves 25% of its maximum, one choose 50%, the resulting im-
age is quite similar, as can be seen in Figure 6. In order to guard against any
significant variation in the statistics of an image across the image (for example,
in some of our images part of the detector is directly exposed to the x-ray beam)
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Figure 4: Euler characteristic of Laplacian imagé as a function of threshold.

the image is divided into overlapping 250 x 250 pixel regions and the collection
of all pixels so selected is used for the segmentation (the overlap corresponds to
advancing the 250 x 250 in steps of one third the size of the window).

Calcification candidates are then constructed as collections of contiguous
pixels, using four-way continuity. For the x-ray image from which images 1-6
have been derived, the algorithm (using a threshold of 25% of that at which the
Euler characteristic obtains its maximum) gives 1677 candidates.

2.2.3 Feature Analysis

For each calcification candidate, a variety of features are calculated. The first
set of features uses a rectangular region from the denoised image containing the
pixels in the calcification candidate and extending a further 7 pixels in each
direction. Within this region, all pixels that would be segmented by a cut-
off corresponding to 35% of the Euler characteristic maximum (this excludes
slightly more than the pixels in the actual calcification candidates) are used for
a quadratic fit which serves as an estimate of the background of the calcification.
Thus, the pixels are identified by the using the heuristic involving the Laplacian
image and the Euler characteristic as a function of threshold, but the region
being used here is the corresponding region in the de-trended and de-noised
image, e.g. Figure 2. From this fit the following features are estimated:

maz depth The maximum difference between the fitted quadratic background and the
actual image value at any pixel associated with the calcification candidate.

10
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Figure 5: Segmentation based on Laplacian image at the point where the Euler
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ave depth The average difference between the fitted quadratic background and the
actual pixel values.

x% The value of x? per degree of freedom, as a measure of how well the
quadratic fit the background.

X2, The sum of the squares of the differences between the values of the pixels
in the candidate and the estimates of those values from the fit to the
background.

The distributions of maximum and average depth features are shown in
figure 7. The distributions of |/x} and x2,,, are shown in figure 8.

Another set of features are calculated in an attempt to exclude false calcifi-
cation candidates which are associated with linear anatomical features. Figure 9
shows a linear feature in which three presumably incorrect candidates have been
identified. In this image, the linear feature is roughly in line with the long axes
of the calcifications. For each calcification candidate, the pair of pixels that are
separated by the greatest Euclidean distance is identified, and the line through
this pair is considered to be the long axis of the calcification. The width of the
calcification is then identified as twice the farthest distance of any candidate
pixel from the long axis. A region 7 times the length of the calcification and 8
times the width is then divided into three regions parallel to the long axis of the
calcification, and the average of each region is used as a statistic. The resulting
statistics of this procedure are

aspect ratio The ratio of the width of the candidate to the length.

HonlinesTonlines

H+sidesO+sides

K—sides0—side For these quantities, three rectangular regions whose long axes are
parallel to the long axis of the candidate are used. The “on line” region
contains the calcification, while the other regions lie to either side (the
sign is an arbitrary label). For each region, the average pixel value p and
the standard deviation o in the set of pixel-values is calculated.

The distributions of these values are shown for all candidates and selected
candidates in Figures 10 and 11.

In an additional search for large scale structures which can produce false
positives, an additional set of statistics are calculated as follows. First, the
average and population variance of the pixels in the candidate calcification are
determined. Second, the average and population variance of the pixels in an
approximately 300 x 300 pixel region around the calcification candidate are
calculated. Finally, starting with the calcification, one determines the largest
connected region such that all of the pixels in that region are less than the av-
erage over the 300 x 300 region by one population variance. This new region
is intended to represent any large scale structure in which the candidates are

13
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Figure 7: At top, the maximum depth feature for all calcification candidates
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Figure 9: (Left) Linear detail with presumably false calcification candidates.
(Right) Region identified as a possible larger structure in which these candidates
are situated.

Aspect Ratio

10°

10" |
= H
_5 107 ,_.:
E; !

i

10°

- i

iy o0 10 20

Aspoct ratio
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Flgure 11: On-line (Uontine) and off-line (pysige and p._s“je combined}. The
on-line statistics have been scaled by a factor of 2.

located. Figure 9 shows an example of the region determined for the three candi-
dates in one linear feature. Regions similarly associated with other calcification
candidates are shown in Figure 12.

From this one obtains the following features:

Ntructs Hstruct, Ostruct Lhe number, mean, and population standard deviation of pixels identified
as being in a possible large scale structure containing the calcification
candidate.

pcale, ocaic The mean and population variance of the pixels in the calcification candi-
date.

preg, oreg The mean and population variance of the pixels in the 300 x 300 région.

The distributions of Nstruct, Mstructs Bealc, Hreg T€ shown in Figure 13.
To remove false positives, calcifications candidates are rejected for failing
any of the following tests:

1. If the aspect ratio < 0.25, then candidate is assumed to be a linear
anatomic feature and not a calcification.

2. If either of the side averages is significantly greater than the on line aver-
age, then the candidate seems to lie inside a linear feature and is rejected
as a false positive. Specifically, if

2
H—side — Honline =~ 5\} 0 gae T sr(z:niima
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Figure 12: Segmentation of regions of large scale structure which might indicate
that some calcification candidates are false positives.
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Figure 13: Values for the size of possible larger structures containing calcifi-
cations (Nsruct), the average value in such regions pseruct, the average digital
value in calcification candidate pcaic, and the average value in 300 x 300 pixel
regions containing the candidates (preg). These values are calculated from the
image after unsharp masking, so the baseline value has been adjusted to 2000.




Figure 14: Example of a region in which calcification have been identified and
segmented.

or

H 2 2
Hside — ponline > 5 \V 0% side T Ponline

then the candidate is rejected.

3. If x2,;, < 25X%, then the candidate is rejected. Note that for uncorrelated
noise, this would correspond to a cutoff in the signal-to—noise ratio of 5.

4. If pireg — picale < 20teg, then the candidate is considered insufficiently dense
to be a true calcification.

5. If maz depth < 2x; or maz depth < 20, the candidate is similarly
rejected.

6. If Ngirucs > 1000, the candidate is assumed to be a false positive resulting
from a large scale anatomical structure.

7. If Ngtruct 18 greater than twice the number of pixels in the candidate and
Lstruct — feale < Tstruct + Tcale then the candidate is rejected.

Figure 14 show a region containing calcifications that have been segmented.
Some examples of candidates which are probably false positives are shown in
figure 15.

2.2.4 Performance

Having no true “gold standard” available, we compared the set of calcifications
identified by our algorithm with those identified by a human observer. The

20




Figure 15: Example of probable false positives.
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Figure 16: Comparison of the number of candidates detected by the algorithm
with the number identified by a human observer. '

human observer was a medical physicist familiar with mammography. A com-
parison of the number of calcifications detected in each image by the human
observer with the number algorithmically detected is shown in figure 16, with
a correlations coefficient of 0.5. Figure 17 shows the fraction of calcification de-
tected by the human observer which were also detected algorithmically, and also
the fraction of the calcifications detected algorithmically which were ‘detected
by the human observer. Approximately one half of the manually identified cal-
cifications were identified algorithmically.

Retrospectively, among the calcifications identified algorithmically but not

 identified by the human observer, there was a continuum ranging from shadows

which were almost certaintly not calcifications, through various degrees of am-
biguity, to objects which were almost certaintly calcifications which had been
overlooked by the human observer. A subset of the images had been similarly
analyzed by a second human observer, also a physicist. Agreement between
physicists was about as good as agreement between the algorithm and each
physicist. We have discussed with radiologists the fact that there seems to be
an irreducible degree of ambiguity in deciding which shadows on a mammogram
represent calcifications and which ones don’t. This makes it difficult to “tune”
an algorithm in a meaningful manner.

2.3 Correlation

Each calcification lies on the geometric line from the position of the x-ray focus
at the time of acquisition to the position of the shadow of the calcification in

22
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Figure 17: Fraction of candidates identified by the human or algorithmic ob-
server upon which the two observers agree upon the presence of a calcification.

the image. Thus, for corresponding calcifications in multiple images, the lines—
of-sight connecting the x-ray foci and the projections must intersect at the
position of the calcification in space. This requirement allows one to identify
shadows corresponding to the same projection in multiple images.

In practice, we have found several issues that confound this approach. One
issue is that candidates visible in one image occasionally are not visible in the
second image or overlap other calcifications, precluding a unique matching of
calcifications. A second issue we have found is that projected shadows are often
not consistent with any matching between images. This appears to be due
to a combination of patient motion and some uncertainty or instability in the
. acquisition geometry.

As a result, both the matching problem and the geometry correction prob-

lem must be dealt with simultaneously. The most general possible geometric

~ correction would introduce a large number of parameters to fit. We have settled

on providing an effective position adjustment of the data, consisting of a trans-

lation of the second off-axis image in the horizontal direction and translations

of the third (on-axis) image in both the horizontal and vertical directions. This
combined algorithm is discussed in the next subsection.

2.3.1 Algorithm

For a point P and aline [, let d(P,1) be the perpendicular distance from the point
to the line. For a given set of sight-lines Iy, I3, I3, each joining the position of
the x-ray focus to the corresponding shadow of a calcification, the calcification
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should lie at the common intersection. Due to experimental uncertainties, it
is then reasonable to use as the position of the calcification the point which
minimizes the distances to the sight-lines in a least squares sense, i.e. P.y is
the point P which minimizes:

drms(P: I},{g, Zg) = \/{d2<Pszl> +§(P: 12) + dQ(PJS}} fs (1)

The minimum RMS distance then gives an measures of how well the three sight—
lines fit the hypothesis that they intersect at a point.

For a given adjustment of the acquisition geometry, it was necessary to ex-
amine all possible matches between shadows in each image. To remove matches
that were clearly inconsistent, and thereby reduce the combinatorial complexity,
the following preliminary test was performed. For each pair of projections in
the off-axis images, the position of the hypothetical calcification corresponding

to those two projections, Poyiew, was determined by minimizing the RMS error
using only the two view, i.e.: '

drms (P, 11, 12) = V(@(P, 1) + d2(P, 12)) /2. ‘ 2)

The point Poyiew Was then projected into the third view and only shadows
within 0.72 cm of the projection of the hypothetical calcification where further
considered. For all remaining triples, the values of drps using the three sight-
lines was then computed.

All hypothetical matches of shadows between the three views were then
sorted according t0 dims. Any set of three shadows in which one of the shadows
had occurred in a set of three with a smaller dy,s was then removed from the
list, so that each shadow belonged at most to one set of three shadows. As a
measure of the overall success in fitting all of the calcifications, we calculated:

1 ‘
F=
GO (l;; gt Ains(l, 12, 13) /e yon @
where deutor = 0.05mm and the sum runs over all matches of sight-lines which
passed the preliminary descriminator as discussed in the previous paragraph
and drms < deutof-

The GOF (Goodness of Fit) score was then used to adjust the geometric
acquisition parameters to approximately compensate for the uncontrolled geo-
metric effects discussed above. The geometry was varied by shifting the second
off-axis view up to 1 cm in the horizontal direction from its nominal position,
and adjusting the third (on axis view) up to 1 cm in either the horizontal or
vertical direction. Adjustments were made in steps of 48 um, corresponding to
the size of the pixels. The adjustment which gave the best GOF was then taken

as the best approximate compensation for the combination of patient movement
and geometric uncertainty.

2.3.2 Results

Figure 18 shows three views acquired for one of our cases. Four of the calcifica-
tion matches are shown by corresponding labels in the three images. The first

24




three matches (a, b, and ¢) are intuitively reasonable. The fourth match (d) is
probably incorrect in the middle figure, due to the failure of the segmentation
algorithm to locate the corresponding shadow in this region. Figure 19 shows
the fraction of calcification candidates automatically identified in each image
which were matched with candidates in the other two.image. Figure 20 shows
the distribution of d,,; for all calcifications in all images.

2.4 Euler Characteristic

This section represents some notes on the use of the Euler characteristic.

2.4.1 Euler Characteristic

For a selected set of picture elements, the Euler characteristic represents the
number of contiguous regions into which that set of elements can be divided
minus the number of holes in those objects. In particular, the Euler character-
istic can be computed for the excursion set (the set of pixels passing a given
thresholding condition) as a function of threshold. As the Euler characteristic
can be calculated in terms of local data, the Euler characteristic of excursion
sets as a function of threshold can be calculated in a single pass through the im-
age, making this calculation appealing for computational reasons. For stringent
thresholding conditions (so that the excursion set is small) there are generally
few holes in the resulting excursion set, so the Euler characteristic approximates
the number of objects that would be in the binary image after thresholding. We
looked at this with the intent that by studying the Euler characteristic as a
function of threshold, one could then choose a threshold which reveals mean-
ingful objects in the resulting segmentation. This is based loosely on the fact
that human observers, when attempting to set such a threshold manually, have
some success by looking for a threshold at the point at which distinct objects
seem to appear. )

2.4.2 Calculation of the Euler Characteristic

The Euler characteristic is equal to the number of regions minus the number

of holes. The advantage of the Euler characteristic is that it can be computed
from local data as

x = #Faces — #Edges + # Vertices. " (4)

Given a set of pixels S in a square grid, two methods suggest themselves for
computing the Euler characteristic. For the first method, x4(S), one considers
each pixel to represent a square region of the plane. If the pixel is in the set S,
then that pixel is included among the set of Faces, its four edges are included
among the set of Edges, and its four vertices are counted among the set of
Vertices. As each edge is shared by two pixels (except at boundaries) and each
vertex is shared by four pixels (except at boundaries) one must take care to
not count edges or vertices multiple times. A second method, x5(S), results

25




Figure 18: Segmentation in 3 views. Four three-way matches are shown, with
root-mean-square distances to lines of (a) 0.002 cm, (b) 0.002 cm (c) 0.003 cm,
and (d) 0.03 cm.
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Figure 21: This set of pixels can count as one or two objects: x4 = 1 and
XB = 2.

from considering each pixel value to be a sample point at the center of the
pixel. The number of vertices is then given by the number of pixels in the set S,
the number of edges is given by the set of horizontal or vertical edges between
adjacent pixels in S, and the number of Faces is given by sets of four pixels with
coordinates (1, j), (i,5 + 1), (i + 1,5) and (i + 1,7 + 1) all of which are in S.

The values of x4 and xp are not identical, as seen in Figure 21. The set
of pixels S in this image could be reasonably grouped into one or two objects.
According to the counting rules for x4, there are a total of two faces, eight
edges, and seven vertices (noting not to double count the shared corner), giving
x4(S) = 1. According to the xp rules, there are no faces or edges, but there are
two vertices (corresponding to the sample points at the centers of the pixels) so
that xp(S) = 2. :

The counting rules are dual in the sense that if the entire square grid is
divided into two disjoint sets S and ', then

xa(S) +x8(S") = 0, ©)

i.e. every object in S is a hole in S’ and vice-versa. The equality can not be
exact due to the presence of a boundary, as connected regions of one set which
reach the boundary are not counted as holes in the other set. In order to remove
the issue of boundary conditions, for the remainder of this paragraph we will
assume periodic boundary conditions. The equality in equation 5 is exact under
these boundary conditions, so that the approximation in equation 5 under the
boundary actually implemented is simply related to ignoring boundary effects.
Now to understand equation 5, observe that every pixel is either in S or S'. If
it is in S, then in contributes a face according to the x4 counting rules, while
if it is in S then it contributes a vertex according to the yp counting rules, so
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that
#Faces4(S) + #Verticesp(S') = N (6)

where N is the total number of pixels in the grid. Further, given two adjacent
pixels (either horizontal or vertical) then, it is either the case that at least one
of the pixels is in S, so that the common edge between the pixels contributes
to the number of edges according to the x4 rules, or both pixels are in §, in
which case the edge between the sample points contributes to the number of
edges according to the xp rules, and as these cases are mutually exclusive one
has

#Edges 4 (S) + #Edgesp(S") = Nedge )
where Nggge is the total number of edges. Similarly, every corner of every pixel
is either the corner of a pixel in S or is the corner of four pixels with sample
points in S’, and again as these cases are mutually exclusive one has

#Vertices4(S) + #Facesp(S’) = Nvertices (8)

where Nyertices is the number of corners of all pixels in the image. Combining
equations 6, 7, and 8 and noting that, with periodic boundary conditions N —
Nedge + Nyertices = 0, one obtains the result given by equation 5.

The ambiguity in choosing between the counting rules corresponding to x
and x g produces several odd features. Note, for example, that if the set of pixels
shown in gray in Figure 21 are take as the set of pixels of interest, then one object
is visible, but if the two pixels are taken as the excluded set, then there are two
holes in the region. This asymmetry produces some counter-intuitive results.
For example, if the random process generating the field of pixels values produces
values symmetrically relative to some mean value (as, for example, a Gaussian
random field) then one would intuitively expect that the Euler characteristic for
the excursion set as a function of threshold would be symmetric with respect
to the mean value of the field. However, because of situations like the above,
configurations like that in Figure 21 carry more weight as “holes” than as pixels
that are part of the segmentation, so that the curve is not symmetric. Instead,
the Euler characteristic tends to be negative at a threshold corresponding to
the image mean and the magnitude of the most negative value is greater than
the magnitude of the highest value.

It is interesting to note that the following change of rules removes this ambi-
guity. Consider the pixel values localized on “sample points”, each sample point
being a possible vertex in the selected set. As before, let edges be lines between
adjacent vertices. However, choose the lines between adjacent vertices in such
a way that the resulting set of vertices and line segments results in dividing the
plane up into triangles (requiring, of course, that two distinct segments meet
only at vertices corresponding to sample points and that no point is inside two
distinct triangles). Now use the resulting triangles as candidates for faces, the
triangle serving as a face if and only if all three vertices are in the set S. Under
these rules, there are no ambiguities analogous to that in Figure 21, and one
can prove that (again requiring periodic boundary conditions)

x(8) +x(8")=0 9
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where the Euler cha:actensmcs for both sets are computed by the same rules,
as described earlier in the paragraph

2.4.3 Random Field Examples

Figure 22 shows each component of the Euler characteristic and the Euler char-
acteristic itself (according to the x4 rules) as a function of threshold, normalized
by the number of pixels in the image. The simulation in Figure 22 corresponds
to white Gaussian noise on a 2048 x 2048 grid. As is well known[1], the curves
in Figure 22 can be calculated from a simple theoretical argument. Given that

Pz <t)= (} +erf (\/5)) (10)

is the probability of a given pixel having value z less than or equal to a thresh-
old ¢, one can treat the inclusion of each possible face, edge, or vertex as a
independent random event and obtain

Faces(t)/N = P(z<t) (11)
Edges(t)/N = 1-(1-P(z<1t)? (12)
Vertices(t)/N = 1-(1- Pz <t))* (13)

where N is the number of pixels in the image. When so calculated, agreement
was found to be better than 1%.

Figure 23 shows the Euler characteristic as a function of threshold for four
different noise sources. In each case, the threshold has been rescaled so that
the horizontal axis is in units of pxxel—stanéard—dewatmns relative to the image
mean. The Gaussian noise is the same as in figure 22. The negative exponential
and “power-of-cosine” curves correspond to two cases of noise which decreases
with frequency, though in the first case the noise power spectrum is not smooth
at zero frequency and in the second case it is. The “CT” noise corresponds to
noise which ramps up with frequency, somewhat like CT noise. In the “pow-

cos” case the noise results in very strong correlations and a few large regions, so
the vertical axis has been rescaled.

2.4.4 Discussion and Summary of Scientific Results

In this grant, we generated a manually segmented and paired dataset of 110
patients images, which we have used as a “gold standard” in the evaluation of
computer algorithms for identifying, segmenting and correlating calcifications.
We have been able to develop two separate computer algorithms, one for seg-
mentation of the regions, the other for correlationg calcifications between the
images. Both are quite robust. There are a number of significant findings from
this work that will be published. First, the use of the Euler characteristic to
determine connectivity in an automated fashion is unique. Secondly, the simul-
taneous correction of patient motion and the determination of correspondence
between the views is unique.
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Figure 22: x4 and components as a function of threshold for white noise. Values
have been divided by the number of pixels in the region. The horizontal axis is
in units of standard deviations of the pixel values.
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Figure 23: Comparison of chi4 as a function of threshold for four different noise
sources. ‘




3 Key Research Accomplishments

The following is a list of key research accomplishments resulting from this work:

1.

Developed a database of 110 biopsy-proven cases, with 3 digital images of
each case

. Developed a set of segmented images from each of 110 cases. In these

data, each calcification from all three views of each patient was manually
identified, and semi-automatically segmented.

. Developed a set of manually determined correspondences.

. These datasets were used to develop an automatic identification and seg-

mentation algorithm that tested each point in an image as a potential
seed point and then tested each resultant segmented region for validity as
a potential calcification. A key feature of this algorithm was the use of
the Euler characteristic to determine connectivity.

. The above datasets were also used to develop an automatic correspon-

dence algorithm. The algorithm used a weighted summation that allowed
us to simultaneously correct for patient motion and determine optimal
correspondence.
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4
4.1

1.

Reportable Outcomes

Published Manuscripts

A.D.A. Maidment, M. Albert, and E.P. Conant. Three-Dimensional Imag-
ing of Breast Calcifications. In Exploiting New Image Sources and Sensors.
Proceedings of the SPIE, 3240, 200-208 (1997).

A.D.A. Maidment, M. Albert, E.F. Conant, and S.A. Feig. Three-Dimensional
Visualization of Breast Cancer. In Digital Mammography '98, edited by

N. Karssemeijer, M. Thijssen, J. Hendricks, and L. van Erning, Kluvier,
Holland, 57-60, (1998).

. AD.A. Maidment, M. Albert. Automated Reconstruction of 3-D Calci-

fications. In IWDM 2000 5th International Workshop on Digital Mam-
mography, edited by M.J. Yaffe, Medical Physics Publishing, Madison WI,
72-80 (2001).

Abstracts and Presentations

. A.D.A. Maidment, M. Albert, E.F. Conant, and C.W. Piccoli. A method

for three-dimensional imaging of breast calcifications. World Congress
on- Medical Physics and Biomedical Engineering, Nice, France, Sept. 18,
1997. (Poster)

. A.D.A. Maidment, M. Albert, E.F. Conant, and C.W. Piccoli. A method

for three-dimensional imaging of breast calcifications. Medical and Bio-
logical Engineering and Computing, 35, Supplement Part 2, 751 (1997).

. A.D.A. Maidment, M.Albert, E.F. Conant, S.A. Feig, C.W. Piccoli, S.A.

Nussbaum, et al. A computer workstation for 3-D imaging of the breast.
83rd Scientific Assembly of the Radiological Society of North America,
Chicago, IL, Nov. 30 - Dec. 5, 1997. (InfoRAD)

. AD.A. Maidment, M.Albert, E.F. Conant, S.A. Feig, C.W. Piccoli, S.A.

Nussbaum, et al. A computer workstation for 3-D imaging of the breast.
Radiology, 205(P), 741 (1997).

. A.D.A. Maidment, M. Albert, and E.P. Conant. Three-Dimensional Imag-

ing of Breast Calcifications. The 26th AIPR Workshop: Exploiting New
Image Sources and Sensors, Cosmos Club, Washington DC, Oct. 16, 1997.

. A.D.A. Maidment, M. Albert, E.F. Conant, and S.A. Feig. Three-Dimensional

Visualization of Breast Cancer. 4th International Workshop on Digital
Mammography, Nijmegen, The Netherlands, June 10, 1998.

. AD.A. Maidment, 3-D Imaging of the Breast. 6th International Cam-
bridge Conference on Breast Cancer Screening. Cambridge, England.
April 14, 1999.
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12.
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. A.D.A. Maidment, and M. Albert. “Automated Reconstruction of 3-D

Calcifications”. 5th International Workshop on Digital Mammography,
Toronto, Canada, June 14, 2000.

. AD.A. Maidment. ”3-D Imaging of the female breast”. Imaging 2000,

Stockholm, Sweden, June 29, 2000. (Invited Presentation)

A.D.A. Maidment, and M. Albert. “Automated 3-D Limited-View Binary
Reconstruction of Breast Calcifications”. 42nd Annual Meeting of the
American Association of Physicists in Medicine, Chicago, IL, July 25,
2000.

AD.A. Maidment, and M. Albert. “A Clinical Study of Calcifications
Imaged by 2-D and 3-D Digital Mammography”. DOD Era of Hope,
Atlanta, GA, June 8- 11, 2000.

A.D.A. Maidment, and M. Albert. “3-D Digital Mammography: An Au-
tomated Method of Image Reconstruction”. DOD Era of Hope, Atlanta,
GA, June 8-11, 2000. A.D.A. Maidment, P. Bakic and M. Albert. “3-D
Digital Mammography: A Comparison of Image Reconstruction Meth-
ods”. DOD Era of Hope, Atlanta, GA, June 8-11, 2000.

Funding Applications

. Andrew D. A. Maidment, Principle Investigator, DOD Breast Cancer Re-

search Grant, DAMD17-98-1-8159, “3-Dimensional Imaging of the Breast”.
7/98-6/2001.

. Andrew D. A. Maidment, Principle Investigator DOD Breast Cancer Re-

search Grant, DAMD17-00-1-0465, “A novel method for determining cal-
cification composition”, 7/00-6/03.

Conclusions

In conclusion, we have developed automated algorithms for identifying, seg-
menting, and correlating calcifications in 3-D, using 3 source images acquired at
15 degree increments. The algorithms have been tested with previously acquired
clinical data, which was arranged into a database, and was analyzed by human
observers for the purpose of developing a gold standard for the reconstructions.
The algorithms have worked very well. The use of the Euler characteristic for
connectivity analysis and the simultaneous correction of image correlation and
image motion are particularly noteworthy accomplishments.
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